

Applications of nanomaterials to remove emerging contaminants in water

Divyapriya Govindaraj Ph.D.

Fulbright-Nehru Postdoctoral Fellow

divyapriyag@vt.edu

ISIEF

United States-India Educational Foundation

Bluefield State College

Flow of talk

How can small science help us protect such a big beautiful world?

Emerging Contaminants

- Synthetic or naturally occurring chemicals or any microorganisms, not commonly monitored
- Potential to enter the environment and cause known or suspected adverse ecological and/or human health effects
- Either do not have federal regulatory standards based on peer reviewed science (Type 1 EC)
- Or the regulatory standards are evolving due to new sciences, detection capabilities, or pathways (Type 2 EC)

3/10/2021

https://www.epa.gov/fedfac/emerging-contaminants-and-federal-facility-contaminants-concern

NANOMATERIALS

INDUSTRIAL

PESTICIDES

PHARMACEUTICALS

PERSONAL CARE

Ciprofloxacin

Antibiotic Resistance Gene

Bisphenol A

Microplastics

Drugs in water

How do they reach water sources

Origins of emerging pollutants and routes to the environment

Endocrine disrupting compounds

Mimic hormones can alter normal hormone function in cells

3/10/2021

http://thatslifesci.com/To-BPA-Or-To-Not-BPA-Regulating-Endocrine-Disruptors-TZintel/

Pharmaceuticals and endocrine disrupting compounds

47 pharmaceuticals and EDCs detected in source and finished water at

DWTP-6 over a 22 month period

Environ. Sci. Technol. 2009, 43, 3, 597-603

Antibiotic Resistance

"What does not kill you makes you stronger"

Super buds!

Fconomic burden continues to rise due to

- increase of number of resistant infections •
- increase of microbial resistant towards the .

number of drugs

-Friedrich Nietzsche

Bacteria, not humans or animals, become antibiotic-resistant

New National Estimate*

Each year, antibiotic-resistant bacteria and fungi cause at least an estimated:

Clostridioides difficile is related to antibiotic use and antibiotic resistance:

New Antibiotic Resistance Threats List Updated urgent, serious, and concerning threats-totaling 18

5 urgent threats

2 new threats

Watch List with **5** threats

Per- and polyfluoroalkyl substances (PFAS) – 'forever chemicals'

Up to 110 million Americans could have PFAS - contaminated drinking water

- Characteristics heat, stain, and water resistance that are desired by industry
- Consumer products cookware, food packaging, and stain repellants
- Two of the most prevalent PFAS: Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS)

Mexico

West Virginia

Oregon

Nevada

1

1

1

https://www.ewg.org/interactive-maps/2019_pfas_contamination/map/

Flint water crisis

- Flint water crisis public health crisis (2014)
 - April 2014, Flint changed its water source from treated Detroit Water and Sewerage Department water (sourced from Lake Huron and the Detroit River) to the Flint River.
 - No corrosion inhibitors to the water resulted the leaching of lead from aging pipes
 - extremely elevated levels of lead (neurotoxin) and over 100,000 residents affected
- Environmental Protection Agency (EPA) and Virginia Tech reported hazardous levels of lead in the water at residents' homes in 2015
 - Lead level was as high as 13,200 ppb; 5,000 ppb of lead is hazardous waste (EPA)
- Health effects:
 - affects heart, kidneys and nerves.
 - In children impaired cognition, behavioral disorders, hearing problems and delayed puberty

Perchlorate

- - Use: solid fuel for missiles and rockets
 - Occurrence: Can be found naturally in the environment, most of it is man-made.
 - Reason:
 - Since the 1950s, over 870 million pounds manufactured in USA.
 - Due to over production, use, and improper disposal contaminated soil, drinking water, and irrigation water
 - Health effects: lower the thyroid activity (hypothyroidism), leads to have adverse effect on Skin, Cardiovascular system, Pulmonary system, Kidneys, Nervous system etc.

Estimated total exposure (USFDA)

- Food in infants (aged 6–11 months) and children (aged 2 years)
 - 0.26 to 0.39 µg/kg body weight per day.
- Baby food contributed (in infants) 49%
- Dairy products contributed (in 2-year-olds) 51%
- Vegetables contributed (in adults) 26% to 38%

3/10/2021

J Expo Sci Environ Epidemiol. 18(6):571-80

https://www.who.int/water_sanitation_health/water-quality/guidelines/chemicals/perchlorate-background-jan17.pdf?ua=1

Why do we need the new treatment? Where do we place it?

Our convectional treatment process is designed to remove the basic water quality parameters; not the emerging pollutants.

We need to remove the emerging contaminants too!

1. Need to purify the water at the point of use

- Filters at household tap water
- 2. Where there are time/place/situation, we do not have access to the convectional treatment process
 - Places where people consume groundwater which are polluted with natural or man made chemicals
 - Emergency situations, Army camps etc.

3/10/2021

Nanomaterials for Water treatment

Nano

Nano means "Dwarf" (Greek) = 10-9

- Nanoparticles = 1 100 nm
- Width of one strand of human hair = ~50 to 100 µm = 50000 nm to 100000 nm
- Nanoparticles are usually 500 - 100000 times 'thinner' than a human hair width!

What's So Special about the Nanoscale?

- High surface area to Volume ratio
- One benefit of greater surface area—improve reactivity
- Helps "functionalization" of nanoscale material surfaces (adding particles for specific purposes)
- Ideal candidates for water treatment and desalination

Nanomaterials

Graphene

Carbon nanotube

Zero-Valent Iron

Titanium dioxide

Gold nanoparticles

Magnetite

Graphene

Andre Geim (left) and Konstantin Novoselov won the Nobel Prize in Physics, 2010

- Graphene is a form of carbon that exists as a sheet, one atom thick
- Atoms are arranged into a twodimensional honeycomb structure
- About 100 times stronger than steel and conducts electricity better than copper
- About 1% of graphene mixed into plastics could turn them into electrical conductors

https://www.bbc.com/news/science-environment-11478645 https://www.npr.org/templates/story/story.php?storyId=130353581

Graphene-based materials

Graphene-based materials to contaminants

- 1. Organic contaminants
- 2. Heavy metal
- 3. Disinfection
- 4. ARG removal
- 5. Desalination
- 6. Thermal distillation

How it removes the contaminants

3. Membrane process

Adsorption

1.

Contaminant degradation

Adsorption

Chemosphere, 2018, 212, 1104-1124

Adsorption of organic contaminants

Chemosphere, 2018, 212, 1104-1124

Adsorption of organic contaminants

Nanomaterials	Pollutants	Maxmium adsorption (q _m , mg/g)	Treatment conditions	References
Graphene oxide	Levofloxacin	q _m 256.6	T 25 °C	<u>Dong et al.,</u> <u>2016</u>
Graphene oxide	Acetaminophen	q _m 704	T 25 °C; pH 8	<u>Moussavi et al.,</u> <u>2016</u>
Graphene oxide	metformin	<i>k</i> _F 47.1	T 30 °C; pH 6	<u>S. Zhu et al.,</u> <u>2017</u>
Graphene oxide	Anti-inflammatory nimesulide	q _m 82.41	T 25 °C	<u>Jauris et al.,</u> <u>2017</u>
Graphene oxide	17-α- ethinylestradiol	q _m 45	T 25 °C	<u>Sun et al., 2017</u>
	17-β-estradiol	<i>q</i> _m 48	T 25 °C	-
CNTs-Graphene oxide	17-β-estradiol	<i>q</i> _m 144.4	T 25 °C	Kumar et al.,
	ciprofloxacin	<i>q</i> _m 1368	T 25 °C	<u>2017</u>

Science of The Total Environment, 2018, 627, 1253-1263

Graphene-based materials to remove organic contaminants

CNTs for adsorption

Front. Syst. Neurosci., 2014, 8 (91), 1-24

Adsorption of organic contaminants

Nanomaterials	Pollutants	Maxmium adsorption (q _m , mg/g)	Treatment conditions	References
MWCNT	Triclosan	q _m 157.7	T 25 °C; pH 7	<u>Zhou et al., 2013</u>
MWCNT	Norfloxacin	q _m 88.5	T 30 °C; pH 7	<u>Yang et al., 2012</u>
MWCNT	Sulfamethoxazole	k _F 201	T 20 °C	<u>Kim et al., 2014</u>
MWCNT	Lincomycin	k _F 287	T 20 °C	<u>Kim et al., 2014</u>
MWCNT	Sulfamethoxazole	q _m 45.8	рН 7	<u>Tian et al., 2013</u>
MWCNT	Sulfapyridine	q _m 86.1	рН 7	<u>Tian et al., 2013</u>
MWCNT	Sulfapyridine	k _F 350	pH 6.2	<u>Ji et al., 2009</u>
MWCNT	Sulfamethoxazole	k _F 510	pH 6.2	<u>Ji et al., 2009</u>
MWCNT	Ciprofloxacin	q _m 135	T 25 °C; pH 5	Carabineiro et al., 2012
MWCNT	Tetracycline	k _F 240	рН 5	<u>Ji et al., 2010a, Ji et al.,</u> <u>2010b</u>
MWCNT	Tetracycline	q _m 269.5	T 20 °C	Zhang et al., 2011
MWCNT	Sulfonamides	k _F 353–2814	T 25 °C	<u>Zhao et al., 2016</u>
MWCNT	Chloramphenicols	k _F 571–618	T 25 °C	<u>Zhao et al., 2016</u>
MWCNT	Non-antibiotic pharmaceuticals	k _F 317–1522	T 25 °C	<u>Zhao et al., 2016</u>

Removal of emerging contaminants by nanoadsorption

Trend of studies on emerging contaminant removal using nanoadsorption during 2007-2017

Science of The Total Environment, 2018, 627, 1253-1263

Graphene-based materials as adsorbents to remove metal ions

Chem. Soc. Rev., 2015, 44, 5861-5896

Graphene-based materials as adsorbents to remove metal ions

		E	nvironmental	conditions		Maximum adsorption	Interaction	
Adsorbent	Adsorbate	m/V (g/L)	CO (mg/L)	рН	T (K)	capacity (mg/g)	mechanism	Ref.
GO/chitosan	Au(III)	0.2	80	4.0	298	1077	lonic interaction	<u>Liu et al. (2012b)</u>
RGO/Fe ₃ O ₄ /MnO ₂	As(III)	0.5	5	7.0	298.5	14		<u>Luo et al. (2012)</u>
RGO/Fe ₃ O ₄ /MnO ₂	As(IV)	0.5	5	7.0	298.5	12		<u>Luo et al. (2012)</u>
GO	Co(II)	0.1	30	6.0	303	68	Electrostatic interaction	<u>Zhang et al.,</u> <u>2011b</u>
GO/Fe ₃ O ₄	Co(II)	0.4	10	6.8	303	13	Inner-sphere surface complexation	<u>Liu et al. (2011)</u>
GO	Cd(II)	0.1	20	6.0	303	106	Electrostatic interaction	<u>Zhang et al.,</u> <u>2011b</u>
GO		0.1	1	6.0	298	530	Surface complexation	<u>Sitko et al. (2013)</u>
GO/Fe ₃ O ₄ /β-CD	Cr(VI)	1	100	3.0		120	Surface complexation	<u>Fan et al., 2012b</u>
GO		0.5	3.2	5.0	298	47	Coordination and electrostatic interaction	Yang et al. (2010)
GO	Cu(II)	0.1	1	5.0	298	294	Surface complexation	<u>Sitko et al. (2013)</u>
GO/Fe ₃ O ₄		0.4	10	5.3	298	18	Electrostatic interaction, complexation	<u>Li et al. (2012b)</u>
RGO/CoFe ₂ O ₄	Hg(II)	0.14	5	4.6	298	158		<u>Zhang et al.</u> (2014)
GO	Pb(II)	0.1	1	3–7	298	1119	Surface complexation	<u>Sitko et al.</u> (2013)
GO	U(VI)	0.06	98	5.0	293	98	Inner sphere surface complexation	<u>Zhao et al.</u> (2012b) 30

Science of The Total Environment, 2018, 627, 1253-1263

Graphene/Magnetite composite

- Graphene adsorbent to adsorbs organic compounds and heavy metals
- Graphene/Magnetite composite easy separation of graphene from water using magnetic property
- Regenerate the adsorbent and reuse it for further water treatment

Chemical Engineering Journal, 2011, 173 (1), 92-97

Graphene – Antibacterial property

2. Oxidative stress induction

membrane damage via generation of reactive oxigen species

3. Wrapping

Graphene – Removal of ARGs

Chemical Engineering Journal 313 (2017) 836-846

Desalination

Desalination

OH-groups can hydrogen-bond with water and offer a smoother entropic landscape for water molecules to traverse, thus allowing for faster overall water flow

Nano Lett. 2012, 12, 7, 3602-3608

Photothermal membrane for disinfection

Zerovalent Iron (ZVI)

37

CH,-CH, ethane

2H + 2e

Remediation of contaminated sites

Treatment of Arsenic contaminated ground water

• About 239 million people across 153 districts in 21 states of India contain an unacceptably high level of arsenic in water

Adsorbent

- Iron oxyhydroxide selectively remove arsenic
- Gold Disinfect bacteria

Removal efficiency

 arsenic concentration reduced from 250 to 300 ppb to 2 ppb

Cost

6 cents per 1000 liter

Installation

 900 locations in India serving about 600,000 people

https://dst.gov.in/

Photocatalysis

Photocatalysis

Treatment of emerging contaminants (Pharmaceuticals, endocrine disruptors)

Environ. Sci. Technol. 45: 10598-10604

Fenton Reaction

Works the same way how our body generates radicals!

Modified Fenton Process

Electro-Fenton reaction

[•]Nanomaterials In Consumer Products

Distribution of nano based products into product categories

Increasing Trend in number of products

3/10/2021

Environ. Sci.: Nano, 2016, 3, 169-180

Nanomaterials In Commercial Products

Nano-silver in Bandages & socks

Fullerene in "revitalizing" night creams

Nano ZnO "transparent" sunscreen

Widely Used Nanomaterials In Commercial Products

3/10/2021

Possible nanoparticle modifications in the environment

ACS Nano 3(7): 1616-1619

Amphibians as a model system in ecotoxicological studies

Science of the Total Environment, 686 (2019) 332-344

Cytotoxicity studies of selected nanomaterials

Nanomaterial

Fullerene C₆₀ water suspension

C₆₀ encapsulated in poly(vinylpyrrolidone), cyclodextrins, or poly(ethylene glycol)

Hydroxylated fullerene

Carboxyfullerene (malonic acid derivatives)

Fullerene derivatives with pyrrolidine groups Other alkane derivatives of C₆₀

Metallofullerene

Inorganic Silicon dioxide (SiO₂) Anatase (TiO₂) Zinc oxide (ZnO)

Ellecta observed
Antibacterial; cytotoxic to human cell lines; taken up by human keratinocytes; stabilizes proteins
Damages eukaryotic cell lines; antibacterial
Oxidative eukaryotic cell damage
Bactericidal for Gram-positive bacteria; cytotoxic to human cell lines
Antibacterial; inhibits cancer cell proliferation; cleave plasmid DNA
Antimutagenic; cytotoxic; induces DNA damage in plasmids; inhibits protein folding; antibacterial; accumulates in rats' livers
Accumulates in rats' livers
Pulmonary inflammation in rats
Antibacterial; pulmonary inflammation in rodents
Antibacterial (micrometer scale); pulmonary effects in animals and humans

Nanoiron into microalgea cell

Rat lung cell ingesting Carbon nanotubes

Environ. Sci. Technol. 2006, 40, 14, 4336-4345

Nature nanotechnology, 2006, 1(1), 23-24

GO can act as a "nano-blade" that causes

mechanical damage to algal cells

Carbon 155 (2019) 386-396

Absolute and cumulative and number of NM-induced toxicity studies on amphibians

Science of the Total Environment, 686 (2019) 332-344

Thank you!

How do microorganisms gain resistance to drugs?

MECHANISMS OF ANTIMICROBIAL RESISTANCE

Methods of Resistance

- Impermeability of the drug
- Alteration in the drug's target
- Enzymatic drug modifications
- Efflux of the drug

Methods of Resistance Acquisition

- Chromosomal mutations
- Genetic transfer (ex: plasmids)